Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38645179

ABSTRACT

Human cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hours after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity. We confirm extensive concordant loss of TEAD1 binding, active H3K27ac histone marks, and chromatin looping interactions upon infection. Our data position TEAD1 at the top of a hierarchy involving multiple altered important developmental pathways. HCMV infection reduces TEAD1 activity through four distinct mechanisms: closing of TEAD1-bound chromatin, reduction of YAP1 and phosphorylated YAP1 levels, reduction of TEAD1 transcript and protein levels, and alteration of TEAD1 exon-6 usage. Altered TEAD1-based mechanisms are highly enriched at genetic risk loci associated with eye and ear development, providing mechanistic insight into HCMV's established roles in these processes.

2.
BMC Genomics ; 25(1): 273, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475709

ABSTRACT

BACKGROUND: There are two major genetic types of Epstein-Barr Virus (EBV): type 1 (EBV-1) and type 2 (EBV-2). EBV functions by manipulating gene expression in host B cells, using virus-encoded gene regulatory proteins including Epstein-Barr Nuclear Antigen 2 (EBNA2). While type 1 EBNA2 is known to interact with human transcription factors (hTFs) such as RBPJ, EBF1, and SPI1 (PU.1), type 2 EBNA2 shares only ~ 50% amino acid identity with type 1 and thus may have distinct binding partners, human genome binding locations, and functions. RESULTS: In this study, we examined genome-wide EBNA2 binding in EBV-1 and EBV-2 transformed human B cells to identify shared and unique EBNA2 interactions with the human genome, revealing thousands of type-specific EBNA2 ChIP-seq peaks. Computational predictions based on hTF motifs and subsequent ChIP-seq experiments revealed that both type 1 and 2 EBNA2 co-occupy the genome with SPI1 and AP-1 (BATF and JUNB) hTFs. However, type 1 EBNA2 showed preferential co-occupancy with EBF1, and type 2 EBNA2 preferred RBPJ. These differences in hTF co-occupancy revealed possible mechanisms underlying type-specific gene expression of known EBNA2 human target genes: MYC (shared), CXCR7 (type 1 specific), and CD21 (type 2 specific). Both type 1 and 2 EBNA2 binding events were enriched at systemic lupus erythematosus (SLE) and multiple sclerosis (MS) risk loci, while primary biliary cholangitis (PBC) risk loci were specifically enriched for type 2 peaks. CONCLUSIONS: This study reveals extensive type-specific EBNA2 interactions with the human genome, possible differences in EBNA2 interaction partners, and a possible new role for type 2 EBNA2 in autoimmune disorders. Our results highlight the importance of considering EBV type in the control of human gene expression and disease-related investigations.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/metabolism , Genome, Human , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Viral Proteins/genetics , Transcription Factors/metabolism
3.
PLoS Genet ; 18(5): e1009973, 2022 05.
Article in English | MEDLINE | ID: mdl-35576187

ABSTRACT

Atopic dermatitis (AD) is one of the most common skin disorders among children. Disease etiology involves genetic and environmental factors, with 29 independent AD risk loci enriched for risk allele-dependent gene expression in the skin and CD4+ T cell compartments. We investigated the potential epigenetic mechanisms responsible for the genetic susceptibility of CD4+ T cells. To understand the differences in gene regulatory activity in peripheral blood T cells in AD, we measured chromatin accessibility (an assay based on transposase-accessible chromatin sequencing, ATAC-seq), nuclear factor kappa B subunit 1 (NFKB1) binding (chromatin immunoprecipitation with sequencing, ChIP-seq), and gene expression levels (RNA-seq) in stimulated CD4+ T cells from subjects with active moderate-to-severe AD, as well as in age-matched non-allergic controls. Open chromatin regions in stimulated CD4+ T cells were highly enriched for AD genetic risk variants, with almost half of the AD risk loci overlapping AD-dependent ATAC-seq peaks. AD-specific open chromatin regions were strongly enriched for NF-κB DNA-binding motifs. ChIP-seq identified hundreds of NFKB1-occupied genomic loci that were AD- or control-specific. As expected, the AD-specific ChIP-seq peaks were strongly enriched for NF-κB DNA-binding motifs. Surprisingly, control-specific NFKB1 ChIP-seq peaks were not enriched for NFKB1 motifs, but instead contained motifs for other classes of human transcription factors, suggesting a mechanism involving altered indirect NFKB1 binding. Using DNA sequencing data, we identified 63 instances of altered genotype-dependent chromatin accessibility at 36 AD risk variant loci (30% of AD risk loci) that might lead to genotype-dependent gene expression. Based on these findings, we propose that CD4+ T cells respond to stimulation in an AD-specific manner, resulting in disease- and genotype-dependent chromatin accessibility alterations involving NFKB1 binding.


Subject(s)
CD4-Positive T-Lymphocytes , Dermatitis, Atopic , CD4-Positive T-Lymphocytes/metabolism , Child , Chromatin/genetics , DNA , Dermatitis, Atopic/genetics , Epigenesis, Genetic , Humans , NF-kappa B/metabolism
4.
Genome Res ; 31(12): 2185-2198, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34799401

ABSTRACT

The interplay between environmental and genetic factors plays a key role in the development of many autoimmune diseases. In particular, the Epstein-Barr virus (EBV) is an established contributor to multiple sclerosis, lupus, and other disorders. Previously, we showed that the EBV nuclear antigen 2 (EBNA2) transactivating protein occupies up to half of the risk loci for a set of seven autoimmune disorders. To further examine the mechanistic roles played by EBNA2 at these loci on a genome-wide scale, we globally examined gene expression, chromatin accessibility, chromatin looping, and EBNA2 binding in a B cell line that was (1) uninfected, (2) infected with a strain of EBV lacking EBNA2, or (3) infected with a strain that expresses EBNA2. We identified more than 400 EBNA2-dependent differentially expressed human genes and more than 5000 EBNA2 binding events in the human genome. ATAC-seq analysis revealed more than 2000 regions in the human genome with EBNA2-dependent chromatin accessibility, and HiChIP data revealed more than 1700 regions where EBNA2 altered chromatin looping interactions. Autoimmune genetic risk loci were highly enriched at the sites of these EBNA2-dependent chromatin-altering events. We present examples of autoimmune risk genotype-dependent EBNA2 events, nominating genetic risk mechanisms for autoimmune risk loci such as ZMIZ1 Taken together, our results reveal important interactions between host genetic variation and EBNA2-driven disease mechanisms. Further, our study highlights a critical role for EBNA2 in rewiring human gene regulatory programs through rearrangement of the chromatin landscape and nominates these interactions as components of genetic mechanisms that influence the risk of multiple autoimmune diseases.

5.
J Immunol ; 207(4): 1044-1054, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34330753

ABSTRACT

Eosinophils develop in the bone marrow from hematopoietic progenitors into mature cells capable of a plethora of immunomodulatory roles via the choreographed process of eosinophilopoiesis. However, the gene regulatory elements and transcription factors (TFs) orchestrating this process remain largely unknown. The potency and resulting diversity fundamental to an eosinophil's complex immunomodulatory functions and tissue specialization likely result from dynamic epigenetic regulation of the eosinophil genome, a dynamic eosinophil regulome. In this study, we applied a global approach using broad-range, next-generation sequencing to identify a repertoire of eosinophil-specific enhancers. We identified over 8200 active enhancers located within 1-20 kB of expressed eosinophil genes. TF binding motif analysis revealed PU.1 (Spi1) motif enrichment in eosinophil enhancers, and chromatin immunoprecipitation coupled with massively parallel sequencing confirmed PU.1 binding in likely enhancers of genes highly expressed in eosinophils. A substantial proportion (>25%) of these PU.1-bound enhancers were unique to murine, culture-derived eosinophils when compared among enhancers of highly expressed genes of three closely related myeloid cell subsets (macrophages, neutrophils, and immature granulocytes). Gene ontology analysis of eosinophil-specific, PU.1-bound enhancers revealed enrichment for genes involved in migration, proliferation, degranulation, and survival. Furthermore, eosinophil-specific superenhancers were enriched in genes whose homologs are associated with risk loci for eosinophilia and allergic diseases. Our collective data identify eosinophil-specific enhancers regulating key eosinophil genes through epigenetic mechanisms (H3K27 acetylation) and TF binding (PU.1).


Subject(s)
Chromatin/genetics , Eosinophils/metabolism , Epigenesis, Genetic/genetics , Protein Binding/genetics , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics , Animals , Cells, Cultured , Mice , Mice, Inbred BALB C , Myeloid Cells , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/genetics
6.
Genome Biol Evol ; 11(10): 3035-3053, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31599933

ABSTRACT

Changes in transcriptional regulation are thought to be a major contributor to the evolution of phenotypic traits, but the contribution of changes in chromatin accessibility to the evolution of gene expression remains almost entirely unknown. To address this important gap in knowledge, we developed a new method to identify DNase I Hypersensitive (DHS) sites with differential chromatin accessibility between species using a joint modeling approach. Our method overcomes several limitations inherent to conventional threshold-based pairwise comparisons that become increasingly apparent as the number of species analyzed rises. Our approach employs a single quantitative test which is more sensitive than existing pairwise methods. To illustrate, we applied our joint approach to DHS sites in fibroblast cells from five primates (human, chimpanzee, gorilla, orangutan, and rhesus macaque). We identified 89,744 DHS sites, of which 41% are identified as differential between species using the joint model compared with 33% using the conventional pairwise approach. The joint model provides a principled approach to distinguishing single from multiple chromatin accessibility changes among species. We found that nondifferential DHS sites are enriched for nucleotide conservation. Differential DHS sites with decreased chromatin accessibility relative to rhesus macaque occur more commonly near transcription start sites (TSS), while those with increased chromatin accessibility occur more commonly distal to TSS. Further, differential DHS sites near TSS are less cell type-specific than more distal regulatory elements. Taken together, these results point to distinct classes of DHS sites, each with distinct characteristics of selection, genomic location, and cell type specificity.


Subject(s)
Chromatin/chemistry , Evolution, Molecular , Animals , Cell Line , Deoxyribonuclease I , Genomics , Gorilla gorilla/genetics , Humans , Macaca mulatta/genetics , Models, Genetic , Pan troglodytes/genetics , Pongo/genetics , Transcription Initiation Site
7.
Nucleic Acids Res ; 45(20): 11684-11699, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-28977539

ABSTRACT

Our current understanding of cellular transdifferentiation systems is limited. It is oftentimes unknown, at a genome-wide scale, how much transdifferentiated cells differ quantitatively from both the starting cells and the target cells. Focusing on transdifferentiation of primary human skin fibroblasts by forced expression of myogenic transcription factor MyoD, we performed quantitative analyses of gene expression and chromatin accessibility profiles of transdifferentiated cells compared to fibroblasts and myoblasts. In this system, we find that while many of the early muscle marker genes are reprogrammed, global gene expression and accessibility changes are still incomplete when compared to myoblasts. In addition, we find evidence of epigenetic memory in the transdifferentiated cells, with reminiscent features of fibroblasts being visible both in chromatin accessibility and gene expression. Quantitative analyses revealed a continuum of changes in chromatin accessibility induced by MyoD, and a strong correlation between chromatin-remodeling deficiencies and incomplete gene expression reprogramming. Classification analyses identified genetic and epigenetic features that distinguish reprogrammed from non-reprogrammed sites, and suggested ways to potentially improve transdifferentiation efficiency. Our approach for combining gene expression, DNA accessibility, and protein-DNA binding data to quantify and characterize the efficiency of cellular transdifferentiation on a genome-wide scale can be applied to any transdifferentiation system.


Subject(s)
Cell Transdifferentiation/genetics , Cellular Reprogramming/genetics , Chromatin Assembly and Disassembly/genetics , MyoD Protein/genetics , Blotting, Western , Cells, Cultured , Chromatin/genetics , Chromatin/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Profiling/methods , Gene Ontology , HEK293 Cells , Humans , Microscopy, Confocal , MyoD Protein/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Skin/cytology
8.
Nucleic Acids Res ; 43(2): 1268-82, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25567984

ABSTRACT

FOXP3 is a lineage-specific transcription factor that is required for regulatory T cell development and function. In this study, we determined the crystal structure of the FOXP3 forkhead domain bound to DNA. The structure reveals that FOXP3 can form a stable domain-swapped dimer to bridge DNA in the absence of cofactors, suggesting that FOXP3 may play a role in long-range gene interactions. To test this hypothesis, we used circular chromosome conformation capture coupled with high throughput sequencing (4C-seq) to analyze FOXP3-dependent genomic contacts around a known FOXP3-bound locus, Ptpn22. Our studies reveal that FOXP3 induces significant changes in the chromatin contacts between the Ptpn22 locus and other Foxp3-regulated genes, reflecting a mechanism by which FOXP3 reorganizes the genome architecture to coordinate the expression of its target genes. Our results suggest that FOXP3 mediates long-range chromatin interactions as part of its mechanisms to regulate specific gene expression in regulatory T cells.


Subject(s)
Chromosomes/chemistry , DNA/chemistry , Forkhead Transcription Factors/chemistry , Animals , DNA/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Humans , Mice, Inbred C57BL , Models, Molecular , Protein Multimerization , Protein Structure, Tertiary , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics
9.
Mol Cell ; 56(2): 286-297, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25263596

ABSTRACT

In mammals, cytosine methylation (5mC) is widely distributed throughout the genome but is notably depleted from active promoters and enhancers. While the role of DNA methylation in promoter silencing has been well documented, the function of this epigenetic mark at enhancers remains unclear. Recent experiments have demonstrated that enhancers are enriched for 5-hydroxymethylcytosine (5hmC), an oxidization product of the Tet family of 5mC dioxygenases and an intermediate of DNA demethylation. These results support the involvement of Tet proteins in the regulation of dynamic DNA methylation at enhancers. By mapping DNA methylation and hydroxymethylation at base resolution, we find that deletion of Tet2 causes extensive loss of 5hmC at enhancers, accompanied by enhancer hypermethylation, reduction of enhancer activity, and delayed gene induction in the early steps of differentiation. Our results reveal that DNA demethylation modulates enhancer activity, and its disruption influences the timing of transcriptome reprogramming during cellular differentiation.


Subject(s)
Cell Differentiation/genetics , DNA Methylation/genetics , DNA-Binding Proteins/metabolism , Enhancer Elements, Genetic/genetics , Proto-Oncogene Proteins/metabolism , 5-Methylcytosine/metabolism , Animals , Base Sequence , Cell Line , Cytosine/analogs & derivatives , Cytosine/metabolism , DNA-Binding Proteins/genetics , Dioxygenases , Mice , Mice, Knockout , Oxidation-Reduction , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics , Sequence Analysis, DNA , Transcriptome/genetics , Zinc Fingers/genetics
10.
Cell ; 153(5): 1134-48, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23664764

ABSTRACT

Epigenetic mechanisms have been proposed to play crucial roles in mammalian development, but their precise functions are only partially understood. To investigate epigenetic regulation of embryonic development, we differentiated human embryonic stem cells into mesendoderm, neural progenitor cells, trophoblast-like cells, and mesenchymal stem cells and systematically characterized DNA methylation, chromatin modifications, and the transcriptome in each lineage. We found that promoters that are active in early developmental stages tend to be CG rich and mainly engage H3K27me3 upon silencing in nonexpressing lineages. By contrast, promoters for genes expressed preferentially at later stages are often CG poor and primarily employ DNA methylation upon repression. Interestingly, the early developmental regulatory genes are often located in large genomic domains that are generally devoid of DNA methylation in most lineages, which we termed DNA methylation valleys (DMVs). Our results suggest that distinct epigenetic mechanisms regulate early and late stages of ES cell differentiation.


Subject(s)
DNA Methylation , Embryonic Stem Cells/metabolism , Epigenomics , Gene Expression Regulation, Developmental , Animals , Cell Differentiation , Chromatin/metabolism , CpG Islands , Embryonic Stem Cells/cytology , Histones/metabolism , Humans , Methylation , Neoplasms/genetics , Promoter Regions, Genetic , Zebrafish/embryology
11.
Genome Res ; 22(2): 246-58, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22156296

ABSTRACT

While genetic mutation is a hallmark of cancer, many cancers also acquire epigenetic alterations during tumorigenesis including aberrant DNA hypermethylation of tumor suppressors, as well as changes in chromatin modifications as caused by genetic mutations of the chromatin-modifying machinery. However, the extent of epigenetic alterations in cancer cells has not been fully characterized. Here, we describe complete methylome maps at single nucleotide resolution of a low-passage breast cancer cell line and primary human mammary epithelial cells. We find widespread DNA hypomethylation in the cancer cell, primarily at partially methylated domains (PMDs) in normal breast cells. Unexpectedly, genes within these regions are largely silenced in cancer cells. The loss of DNA methylation in these regions is accompanied by formation of repressive chromatin, with a significant fraction displaying allelic DNA methylation where one allele is DNA methylated while the other allele is occupied by histone modifications H3K9me3 or H3K27me3. Our results show a mutually exclusive relationship between DNA methylation and H3K9me3 or H3K27me3. These results suggest that global DNA hypomethylation in breast cancer is tightly linked to the formation of repressive chromatin domains and gene silencing, thus identifying a potential epigenetic pathway for gene regulation in cancer cells.


Subject(s)
Breast Neoplasms/genetics , Chromatin Assembly and Disassembly , DNA Methylation , Gene Silencing , Alleles , Breast Neoplasms/metabolism , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , Cluster Analysis , Epigenesis, Genetic , Female , Gene Expression Regulation, Neoplastic , Histones/metabolism , Humans , Models, Genetic , Repetitive Sequences, Nucleic Acid , Transcription, Genetic
12.
Cell Res ; 21(10): 1393-409, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21876557

ABSTRACT

Pluripotency, the ability of a cell to differentiate and give rise to all embryonic lineages, defines a small number of mammalian cell types such as embryonic stem (ES) cells. While it has been generally held that pluripotency is the product of a transcriptional regulatory network that activates and maintains the expression of key stem cell genes, accumulating evidence is pointing to a critical role for epigenetic processes in establishing and safeguarding the pluripotency of ES cells, as well as maintaining the identity of differentiated cell types. In order to better understand the role of epigenetic mechanisms in pluripotency, we have examined the dynamics of chromatin modifications genome-wide in human ES cells (hESCs) undergoing differentiation into a mesendodermal lineage. We found that chromatin modifications at promoters remain largely invariant during differentiation, except at a small number of promoters where a dynamic switch between acetylation and methylation at H3K27 marks the transition between activation and silencing of gene expression, suggesting a hierarchy in cell fate commitment over most differentially expressed genes. We also mapped over 50 000 potential enhancers, and observed much greater dynamics in chromatin modifications, especially H3K4me1 and H3K27ac, which correlate with expression of their potential target genes. Further analysis of these enhancers revealed potentially key transcriptional regulators of pluripotency and a chromatin signature indicative of a poised state that may confer developmental competence in hESCs. Our results provide new evidence supporting the role of chromatin modifications in defining enhancers and pluripotency.


Subject(s)
Cell Differentiation/physiology , Embryonic Stem Cells/metabolism , Epigenesis, Genetic/physiology , Pluripotent Stem Cells/metabolism , Transcription, Genetic/physiology , Cell Line , Cell Lineage/physiology , Chromatin/genetics , Chromatin/metabolism , Embryonic Stem Cells/cytology , Enhancer Elements, Genetic/physiology , Genome-Wide Association Study , Humans , Pluripotent Stem Cells/cytology
13.
Cell Stem Cell ; 6(5): 479-91, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20452322

ABSTRACT

Human embryonic stem cells (hESCs) share an identical genome with lineage-committed cells, yet possess the remarkable properties of self-renewal and pluripotency. The diverse cellular properties in different cells have been attributed to their distinct epigenomes, but how much epigenomes differ remains unclear. Here, we report that epigenomic landscapes in hESCs and lineage-committed cells are drastically different. By comparing the chromatin-modification profiles and DNA methylomes in hESCs and primary fibroblasts, we find that nearly one-third of the genome differs in chromatin structure. Most changes arise from dramatic redistributions of repressive H3K9me3 and H3K27me3 marks, which form blocks that significantly expand in fibroblasts. A large number of potential regulatory sequences also exhibit a high degree of dynamics in chromatin modifications and DNA methylation. Additionally, we observe novel, context-dependent relationships between DNA methylation and chromatin modifications. Our results provide new insights into epigenetic mechanisms underlying properties of pluripotency and cell fate commitment.


Subject(s)
Cell Lineage/genetics , Epigenesis, Genetic , Fibroblasts/cytology , Fibroblasts/metabolism , Genome, Human/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Cell Line , Chromatin/genetics , CpG Islands/genetics , DNA Methylation/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Genes, Developmental , Histones/metabolism , Humans , Lysine/metabolism , Protein Processing, Post-Translational , Regulatory Sequences, Nucleic Acid/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...